
I n t e g r a t e d M o d e l - C e n t r i c E n g i n e e r i n g

CAESAR Server

1

May 17, 2019

New Design Plan

Maged Elaasar
elaasar@jpl.nasa.gov

Nicolas Rouquette
nicolas.f.rouquette@jpl.nasa.gov

• Copyright 2019 California Institute of Technology. Government sponsorship acknowledged

mailto:elaasar@jpl.nasa.gov
mailto:nicolas.f.rouquette@jpl.nasa.gov

• Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United States Government or
the Jet Propulsion Laboratory, California Institute of Technology

2

Disclaimer

3

CAESAR Server (Black-Box)

Server

CAESAR
Ecosystem

Tool Adapters To
ol

 A
da

pt
er

Tool

Tool

To
ol

 A
da

pt
er

Tool Adapters

Workbench

Authoring
Tools Reporting

Tool

Analysis
Tool

Console

MagicDrawDOORS NG

COTS and JPL Tools

FOUNDRY

COTS and JPL Tools

System
Author System

Stakeholder

4

CAESAR Server (White-Box)

CAESAR
Server

View
A

View
C

View
B

A

B

C

A+B

A+B+C

B+C

Integration Task

Change proposal

Change Integration

• We have implemented the current server and deployed it to two projects
– It meets 100% of the functional and performance needs for those projects

• We are evolving the design to scale with
– Number of deployments
– Number of projects served per deployment
– Number of users per project
– Number of disciplines/applications supported
– Other dimensions that are captured in a demand model (in the backup)

• We are also evolving the design to improve maintainability

5

Current Server Design and Change Motivation

• Step 1: Validate New Design
– Trades and proof-of concept demo (done)
– Document and review new design approach (this presentation)

• Step 2: Develop Minimum Viable Product
– Implement feature parity with current server
– Deploy to production
– Retire current server (at the earliest opportunity)

• Step 3: Develop New features
– This work is to be planned as part of our agile process going forward

6

New Design Strategy

• Functional
– Integration Workflow
– Analysis & Reporting
– Configuration Management

• Under the Hood
– Service Architecture
– Service Implementation
– Service Orchestration
– Service Deployment
– Service Security
– Managed Services

7

Server Design Changes

Integration Workflow

• Integration workflow consists of black-box tasks
– Configured by (pre-commit, post-commit) scripts
– Provenance recorded ad-hoc by scripts
– Published data not configuration managed
– Published data loaded to Jena repository

• Integration workflow is a DAG of primitive processes
– Explicit topology of (adapt, transform, publish)
– Provenance recorded in Git by execution engine
– Published data C/Med in Git as well
– Published data loaded to a SPARQL endpoint

Analysis and Reporting

• Analysis and reporting concerns are mixed in report template
– Implicit analysis topology in the data flow in the template
– Traceability between analysis and report is coarse grained

• Reports are published but not CM’ed
• Reports are viewed through stateful full-fledged servers

• Analysis is specified as a DAG of primitive ops
– Explicit analysis topology (map, reduce, report)
– Traceability between analysis and report is fine grained

• Reports are CM’ed in Git
• Reports are viewed with stateless light-weight viewers

Configuration / Change Management

• Current workflow is opaque
(hidden in report template)

• No provenance available for reports

• Change impact analysis is expensive
(error-prone visual comparison of reports)

• New workflow DAG is transparent

• Provenance metadata is stored in Git

• Change impact analysis is fine grained and
cheap to calculate

Current CAESAR Server (Deployment)

Some Statistics:
• 5 projects
• > 350 tasks executions
• > 5,000 generated reports

Two deployments:
- Production

(EC2 = imce-infr-dev-01)

- Development
(EC2 = imce-infr-dev-02)

Service Architecture

12

• monolith server architecture • micro-services architecture using the
open source Lagom Framework

CAESAR
Server

• Current monolith service stores its state in DB
• New micro-services use two patterns:

– Event Sourcing (ES)
– application events persist in DB
– state is derived from events

– Command/Query Responsibility Segregation (CQRS)
• Distinguish two kinds of operations w.r.t. effects on state

– A command operation depends on current state and affects it
– A query operation depends on current state but does not modify it

• ES + CQRS allows separating
– reads (queries)

• Query processors can be replicated to handle potentially
spikes of demand

• Great for elasticity!
– writes (commands)

• Command processors need to deal with concurrency,
transactions, failures,

Service Implementation

13

• CAESAR batch jobs (processes) are dockerized and
orchestrated with Kubernetes

• Kubernetes helps CAESAR maintain a vendor-neutral
strategy with a very high level of inteoperability with multiple
cloud vendors, including Amazon Web Services

Service Orchestration

• CAESAR batch Jobs (integration tasks) are
orchestrated directly using Jenkins CI

Service Deployment

15

• CAESAR services (and third party dependencies) are
dockerized and deployed using Kubernetes on a cluster
of nodes (in the cloud or on-premise)

• The deployment is configuration managed in Git and
automated using WeaveFlux

• Easily reproducible CAESAR deployments
• Facilitate experimenting with alternate Kubernetes

environments (OCIO, AWS EKS, ...)
• Simplify deployment documentation

• CAESAR services (and third party
dependencies) are deployed manually
and on a single node

Service Security

16

• OpenID/Connect Authentication with Keycloak
• LDAP as an ID provider
• No authorization
• Individual services handle authentication

individually
• Private user data is exposed to CAESAR

services (via JWT tokens)

• Project-specific role-based and/or attribute-based
authorization via CSAESAR realms in Keycloak

• Authorization API Gateway abstracts Keycloak
interface and enforces strict security & access control
compliance

• All external & internal APIs are reverse proxied
through the Authorization API gateway

• No private user data is exposed to CAESAR services

Managed Cloud Services

17

• New design can leverage cloud-based managed services, ex.:
• AWS RDS as a relational database
• AWS Neptune as a SPARQL endpoint
• AWS EKS as a Kubernetes endpoint
• AWS EMR as a Jupyter Notebook service

